Making the Most of Software Simulations
By Shannon Estabrook

Asynchronous simulations are an effective way to train end-users on a new software application. They facilitate a high degree of learner interaction and offer learners opportunities to

· try out the new software application before it is implemented

· practice using the new software in a low-risk environment without affecting real data

· build confidence and enable learners to self-assess whether they’re ready to use the new software on the job.

However, simulating every function of a software application may not fit your project budget or the amount of time your end-users can dedicate to training. You need to be strategic in how you identify and design your training simulations in order to ensure that you make efficient use of your end-user’s training time and get the most bang for your training buck.

Choose simulations wisely

How do you determine which software functions to simulate when the application contains hundreds? Start by looking at how frequent, critical, and difficult the various system functions are for end-users, as well as what the functions have in common.

Frequent and critical. Start the selection process by answering the question: Which system functions do the end-users absolutely need to know in order to perform their job tasks competently?

To answer this question, analyze how the end-users will work with the software application on the job. Identify the functions that the end-users will perform most often, and the functions for which they must make fewer mistakes. For example, in a call center environment, it’s essential for end-users to be able to locate customer accounts on the new system within a few seconds. In this example, the Locate Customer Account function is an excellent candidate for simulation because it’s a key task that users must complete quickly for every call they take. It’s also the initial step for accessing 85 percent of the functions available on the new system.

One caveat: Don’t assume that you must create a training simulation for every task that is frequent and critical. For example, simulating basic data entry of a customer name and address information will challenge a learner’s typing skills more than his or her knowledge of how to use the software application.

Level of difficulty. Start the selection process by answering the question: What functions are straightforward and what tasks will the end-users likely have trouble performing?

Review key screens and features of the new software and rate their intuitiveness by asking the following questions:

· When presented with a job task, would the average user know how to navigate to the correct screen in the software?
· Would the average user look at the screen and automatically know what to do?
· Is system terminology consistent with language the users are accustomed to?
· Is the flow of the software similar to the processes or software applications the users are already familiar with, or are there key differences between the old system and the new that may lead to confusion?

· Does the software use a consistent approach for similar types of functions?

Arrange usability sessions that enable the training and software development teams to watch representatives from the end-user audience work with the software to complete key tasks. Even if the system is still under development, you can glean valuable information by having a relatively small number of end-users provide feedback on a prototype release of the software (or even paper-based printouts of key screens if functional software is not yet available).

Ideally, developers will repair any serious usability issues during the design of the software. However, you will need to decide the best way to address items that are deemed training issues. If a function is not only difficult, but also frequent and critical, it’s probably worth simulating. If it’s a rarely used feature, another instructional technique may be a better solution.

Themes and redundancy. Start the selection process by answering the questions: What do the various software functions have in common? Will end-users be able to generalize what they have learned about one function to other similar functions?

While the software application may contain numerous functions, you can probably sort them into a relatively small number of categories. For example, a call center application’s 50 functions can be classified into four basic types:

· locating customer accounts

· navigating to various views of a customer’s account

· updating account information

· executing transactions.

A well-designed software application will use a consistent approach for each type of function. Be aware of such redundancies when deciding which functions to simulate. For example, while there may be 10 types of information the user can update, the basic procedure for updating information should be the same. If you provide learners with simulations that allow them to practice updating one or two pieces of information, they should be able to apply what they’ve learned to other update functions. You won’t need to provide a simulation for every task.

Target each task

After you’ve determined the functions that you will simulate, it’s important to establish guidelines for how life-like the simulations will be. A full simulation of every screen and feature on a software application may make the online training as costly and complex to develop as the actual software application.

A more efficient—and economical—strategy is to design each simulation to focus on a very specific job task, so that only the actions pertaining to that task are functional in the simulation. For example, if step two of the task requires a learner to select a specific option from a menu, only that option will be active for step two in the simulation. When the learner selects the correct option, the simulation will respond as if the user were working with the real software application. As soon as the learner clicks anywhere else on the screen, they will receive feedback that guides them toward the correct response.

Targeting learners to specific features helps them stay focused on the job task being taught. It also keeps the costs and complexity of simulation development under control.

Vary instructional techniques

Simulations can be combined with other types of e-learning instruction that are not as complex to develop. Here are just a few of the options available.

Rollover screen tours present a screen capture from the software application with various sections highlighted. When a learner moves the cursor over a highlighted section of the screen, such as a field or a button, a detailed explanation appears. Learners can control the order in which they access information and how long they spend reviewing each pop-up explanation box. Rollover screen tours are an effective way to orient learners to the screens in the software application. They may be used on their own or in combination with simulations.

Animations provide opportunities for learners to watch the software application in action. A moving cursor will point to buttons and entry fields as they perform some task. Animations can be an effective way to demonstrate functionality, and typically are cheaper and less complex to develop than simulations. Compared to simulations, animations have a lower level of learner engagement because learners are watching a demonstration rather than practicing it for themselves.

One way to use animations is to support simulations. For example, if a learner is unable to successfully complete a simulation, watching an animated demonstration, may provide the learner with the help they need. After reviewing the animation, learners can go back and try the simulation on their own.

Printable job aids enable learners to print a section of content for future reference. These job aids may include the steps to perform specific tasks or other quick reference information that will come in handy when it’s time for the leaner to use the real software application on the job. Job aids are easy to produce and cost-effective, and should be a basic tool in any e-learning strategy.

When combining instructional techniques, it’s important to let the learner know the type of screen they’re working with and the type of interaction that they’re expected to perform. Clear directives such as move your mouse over the highlighted sections, will minimize confusion and frustration. Standard icons to represent simulations, animations, and rollovers provide learners with quick visual cues about what to do on each screen.

When introducing a new software application, asynchronous simulations are valuable teaching tools. However, in many cases, you cannot (and should not) create a training simulation for every function a software application has to offer. To guarantee that learners will derive the most value from your simulations, be sure to

· make the right decisions about what functions to simulate

· keep your simulations focused

· effectively combine simulations with other types of instruction to build a software-training program that works for your learners

